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Abstract. Properties of the strong nonlinear interaction between solitons have been in- 
vestigated in detail. In this case, the solitons behave exactly like particles colliding elastically 
in a potential field; they never pass through each other, but bounce back at a distance. 
Momentum transfer is considered to be the basic mechanism of interaction. Thus, the 
velocity of propagation of each soliton is a function of time during collision. Explicit 
expressions for the minimum distance between solitons, the time when this distance occurs, 
and the amplitudes of solitons at this time have all been derived. Reversibility and other 
important properties have also been proved. 

1. Introduction 

During the past two decades there has been a great deal of interest in the study of non- 
linear dispersive waves. Many authors have adopted the Korteweg-de Vries equation 
as a model for such physical systems. This subject is well known. Work up to 1971 
has been thoroughly reviewed by Jeffrey and Kakutani (1972). 

Zabusky and Kruskal(l965) made an extensive numerical study of the problem and 
discovered many interesting features. One of the most remarkable characteristics is 
that the Korteweg-de Vries equation has a stable pulse-like solution known as a 
soliton. Analytically, Lax (1968) proved the Zabusky and Kruskal observation for a 
double-soliton system. 

More recently, Hirota (1971) obtained an exact solution for N solitons. Later, 
Wadati and Toda (1972) proved the same solution based on the scheme proposed by 
Gardner et al (1967). 

Gibbon and Eilbeck (1972) found that the asymptotic effect on phase shifts is linear 
for nonlinear interaction. Wadati and Toda (1972) further proved that the algebraic 
sum of the phase shifts of all solitons is conserved which indicates the uniform motion 
of the centre of the system. 

In the present paper, we investigate the properties when strong nonlinear interaction 
between solitons occurs. In this case, solitons behave exactly like particles colliding 
elastically in a potential field; they never pass through each other, but bounce back 
at a distance. Explicit expressions for this minimum distance, the time when this distance 
occurs, and the amplitudes of solitons at this time are all derived. Other important 
properties are also proved analytically. 
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2. Preliminary remarks 

Consider a system of N solitons governed by the Korteweg-de Vries equation of the 
form 

(2.1) U, + uu, + pu,,, = 0, 

subject to the boundary conditions that u(x, t )  vanishes exponentially at x = f CO. An 
exact solution, through the transformation (Hirota 1971, Wadati and Toda 1972) 

may be expressed as 

(2.3) 

(2.3a) 

K i  = (ci/p)”2, (2.3b) 

where NCr indicates summation over all possible combinations of r elements (designated 
as i ,  , i 2 ,  . . . , i , )  taken from N ,  and ( r )  indicates the product of all possible pairs out of 
these r elements; C i  is the initial propagation velocity of ith soliton at t = - 00, and 
ai a constant related to its position. It is understood that for r = 1, q = 1 .  

Without nonlinear interaction, the function f will be 
N 

f o  = n { 1 + exp[K,(x - Cit - a i ) ] ) .  
i 

Thus, 1 - q2(i ,  . . , i,) may be interpreted as an interaction parameter for r solitons. 
When solitons have comparable initial amplitudes, the interaction is strong, otherwise 
it is weak. 

Numerical studies on the interaction of two solitons have shown that when the larger 
soliton approaches the smaller one from the left, it starts to shrink, while the smaller 
soliton starts to grow. In cases when one soliton has much larger amplitude than the 
other (weak interaction), the larger soliton swallows up the smaller one during the 
collision, and re-emits it later. In cases when the two solitons are of comparable ampli- 
tudes (strong interaction), they interact at a distance and separate. As an illustrative 
example, positions of two interacting solitons relative to the centre of the system are 
shown in figure 1 .  It indicates that the phenomenon of strong interaction is very similar 
t o  the elastic collision of two particles in a potential field. 

Hence, we state the basic postulate as follows: 
The mechanism of interaction between solitons is based on the momentum transfer. 

Solitons in  collision have a tendency to repel each other. As  a consequence, one soliton 
slows down while the other speeds up.  Thus, the velocity of propagation of each soliton 
is a function of time, ci(t), subject to the boundary conditions ( t  as independent variable) : 

c .  = c . ,  At t = - C O ,  I )  

Att=CO,  ci = C N + l - i .  

When the initial velocity ratio of solitons is below a certain limit, the two solitons 
become identical at a minimum distance, and bounce off from each other. If the initial 



Strong interaction of solitons 2111 

I 
Figure 1. Typical trajectories of solitons in strong interaction. 

velocity ratio is above this limit, the larger soliton is impulsive enough to overcome 
the repulsion and passes through the other. As an alternative interpretation, one may 
also assume that solitons always pass through each other. 

3. Properties at the centre of the system 

The centre of the soliton system, which moves at uniform velocity, is defined as (Wadati 
and Toda 1972) 

1 (3.1) 
c; Ki(Cit + Xi) 

c; K i  
x, = 

where x i ,  defined as 

is the position at t = 0 on the asymptote to the trajectory of the ith soliton. 
We number a train ofsolitons from left to  right in order, and without loss of generality 

we assume that the soliton on the left always has a larger amplitude than the one on the 
right. For simplicity of mathematical expression, we introduce 

( 3 . 3 ~ )  ti = x i (x  - Cit - ai) 

and 

Ei = exp t,. 
At x = X , ,  substituting expression (3.1) into equation (3.3a), we obtain 

(3.3b) 
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As we sum j over all solitons, the first part in equation (3.4) vanishes; thus we have 
N (N) 

J i < J  
1 5 ,  = -2  1 In ViJ .  

This proves that at the centre of the system (x = X,), the following condition is satisfied 
for all time: 

Since the interaction of a soliton pair is the basic structure of the interaction of the 

For a double-soliton system, by equations (2.2), (2.3), and (3.1), we write 
entire system, we shall deal mainly with the two-soliton system. 

2(ln YI) 
K 1  + K 2  

-- 

Condition (3.5) becomes simply 

q2E1E2 = 1. (3.9) 

Under condition (3.9), equations (3.6) and (3.7) may be reduced to 

u(X, , t )  = 1 2 ~ [ ( t i ~ + t i ~ ) ( E 1 + E 2 ) + 2 ( ~ ,  + K ~ ) ~ ] ( E ,  +E2+2) -2 ,  (3.10) 

Ux(xc .  t )  = 12P(E,-E,)[(K: - K : ) ( E 1  fE,)f2(t i1 -K2)(K:+3K1ti2+Ki)] 

x ( E l + E 2 + 2 ) - 3 .  (3.11) 

I t  is apparent from equation (3.11) that the minimum of U occurs at X, when and 
only when E ,  and E ,  are equal. At this moment (say t = T J ,  by condition (3.9) we have 

(3.12) E ,  = E ,  = l /q.  

By equations (3.3), (3.8), and (3.12), we obtain 

which yields 

T* = a,-a,- --- Inq (C1-C2)- ' .  [ (i2 ill 1 (3.13) 
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At this time ( t  = T*), by equations (3.10) and (3.9) we find that 

Umin(T*j = 3(ci  -C2h 

which occurs at 

2113 

(3.14) 

(3.15) 

4. Solitons at minimum distance 

The distance between two solitons is defined as 

LO) = X2(4 - X l(t), 

where X ,  (t) denotes the position of the ith soliton. Here and throughout this paper, we 
consider the points where U is a maximum as soliton positions, since we have not yet 
found any other better way to define them. Differentiating the above expression, we 
have 

dL dX2 dX, 
dt dr dt 
- - - - - c,(t) - Cl([) .  

Thus, the minimum of L occurs when the velocities of propagation c 1  and c2 are equal 
(both equal to the velocity of the centre of system). Physically speaking, in the beginning 
when c1 > c2 the solitons become closer and closer: after a certain time due to momentum 
transfer so that c1 < c 2 ,  the solitons become more and more distant from each other. 

We are particularly interested in the situation when solitons are at the closest 
position, since at that moment the interaction reaches its peak. The time T, as given by 
expression (3.13), which will be proved in 9 6 ,  is the moment when two solitons are at 
minimum distance. 

Define 

x* = x - X,(t) 

and 

X:(t) = Xi(t)- X,(t). 

At  t = T,, by equations (3.3a), (3.13), and (3.19, we get 

Thus, we have 

or, by expression (3.3bj. 

(qE1 j 1 ’ K I  = (qE2)”K2 

for all x. 

(4.la) 

(4.1 b) 
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For mathematical simplicity, we introduce two variables 

z(x*, T*) = 4E2(X*, T*) 

P = K l I K 2 .  

and 

Then, by equation (4.2), equations (3.6) and (3.7) become 

(4.3a) 

(4.3b) 

u(z) = 12C2q[z(zP- 1)2+p2zP(z+ 1)2](2+2P+qzP+ +q)- , ,  (4.4) 

U , ( Z )  = 12c2qK2Z{~-Z+23p(l -qZ)+p3Zp-1[q+Z3 -Zp(l +qZ3)] 

- (p- 1 ) ( 3 ~ ~ + 7 p + 3 ) r ] ~ ~ + ' ( ~ ~ - ' -  1)-(p+ 1 ) ( 3 ~ ~ - 7 ~ + 3 ) ~ ' ( ~ ' + ~  - 1)) 

x (Z + Z P + ~ Z P +  + q)-  3 .  (4.5) 

By equation (4.1b), we find that 

z(x*)z( - x*) = 1. 

By equation (4.4), we verify that indeed 

U ( W )  = 4 4 ,  

U( - x*) = u(x*). 

which implies that 

This proves that at t = T,, the wave profile is symmetrical to the centre of the system. 
Thus, we have 

A ,  = A, and x:= - x *  2 .  (4.7) 
In order to investigate the distance between two solitons, we have to find the solution 

for 

ux(4 = 0, 
where the expression for ux(z) is given by equation (4.5). The trivial solutions of z = CD 

and 0 represent the minima at x = If: CO. The solution z = 1, as proved in 6 3, represents 
the minimum at x = X,(T,). There are two other solutions, denoted by 2 = z(X,), 
which represent the maxima. Following equation (4.59, the solution Z must satisfy 

z 3 p -  z - 9(Z3P+ 1 - 1) + p3zp- yz3 - zp - qz3 + p + q )  - (p - 1) (3p2 + 7p + 3)qZP(ZP- Z) 

(4.8) -(p+ 1)(3p2-7p+3)Zp(Zp+'- 1) = 0. 

The minimum distance between two solitons is, by definition and equation (4.7), 

L m i n  = X,(T*)-Xl(T*) = 2X:(T*). 

K ~ L ~ ~ ~  = 2 In Z(X,). 

By equation (4.14, we get 

(4.9) 

Since r]  = (p - l)/(p + 11, equation (4.8) shows that Z is a function of p only. Therefore, 
the parameters of locations ( q X i )  and amplitudes (A/3C2) of solitons, and their distance 
(K,L,,,J are all functions of the initial velocity ratio (C,/C2) only. (The word initial 
here refers to t = - CO.) 
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Here, we shall discuss only the solution Z 2 1, which represents the location of 
soliton 2, since by equations (4.6) and (4.7) the other solution Z ( X , )  is just the reciprocal 
of this solution Z(X,). 

When the velocity ratio C , / C ,  approaches unity as its limit, Z(X,)  approaches 
infinity (figure 2). On the other hand, when C,/C2 = 3, we have Z = 1. No solution 
exists for C, /C,  > 3. 

Figure 2. Solution of Z ( X , ,  T,) as function of velocity ratio 

It must be noted that imaginary roots of 2 for C,/C2 > 3 do not imply non-existence 
of two-soliton solutions. In arriving at equation (4.Q the condition of profile symmetry 
at t = T, has been taken into consideration. It indicates that as C, > 3C2, the weak 
interaction occurs. In this case when two solitons coincide with each other, one soliton 
still possesses larger momentum than the other, thus the situation of equal amplitudes 
can never be reached. 

For q << 1 (ie, C, 'Y C,), it is shown in the appendix that an approximate solution 
can be found: 

(4.10) 

By equation (4.9), we have 

ic2Lmin = - 2 In q. (4.11) 

It is also shown in the appendix that 

A/3C2 = 1 +21. (4.12) 

5. Limiting case of strong interaction 

I t  has been mentioned previously that due to the interaction between two solitons 
(note that the amplitude of the left soliton is initially greater than the right one), the left 
soliton reduces its velocity of propagation while the right one increases its velocity. If 
the difference of initial velocities is not very large, then the velocities at some time later 
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become equal before the left soliton can overtake the other. Thereafter, since the velocity 
of left soliton becomes smaller than the right one, they start to separate from each other. 
This is the case of strong interaction. Otherwise, it is the case of weak interaction. There- 
fore, C,  = 3C,, for which the solitons coincide when their velocities become equal, 
is the limiting case of strong interaction. Mathematically, by equation (4.8) we obtain 

Z(T*) = 1. 

Lmin = 0. 

By equation (4.9), 

By equation (4.4), 

A/3C2 = 2. 

This is probably the best case to  study the nonlinear interaction when one soliton 

By expression (4.3a), 
coinicdes with the other. The wave profile may be found as follows. 

z = v exp[Kc,(x - C2 T, - ~ 2 ) ]  = Z ~ X P [ K ~ ( X  - X 2 ) ] .  

By equation (4.2), 

z p  = ~exp[K,(X-C,T*-a,)] = ZPeXp[K,(X-X1)]. 

x1 = x, = X,(T*). 

z = exp(Kzx*), 

z p  = exp(K,x*). 

Here, 

Due to the fact that Z = 1 for this case, we have 

Thus, substituting these expressions into equation (4.4) and expressing in terms of 
hyperbolic functions, we obtain 

U - 3 sech2(&,x*) + tanh2(+c,x*) seCh2(+c,x*) 
A [J3 - tanh(+K,x*) tanh(+~,x*)]~  
- -  (5.1) 

The wave profile has a very flat top (figure 3). I t  is interesting to note that zero 
curvature occurs at the centre; ie, 

U,, = 0 at x* = 0. 

This may be interpreted as the phenomenon that two maxima and one minimum fall 
on a single point. 

6. Reversibility and asymptotic behaviour 

Now we shall prove that the solution u(x, t )  satisfies the condition of reversibility 

U ( X ,  - e, T, - 5 )  = U ( X ,  + e, T, + T I ,  (6.1) 

where the variables e and T are both positive, and X, and T* are constant as given by 
equations (3.15) and (3.13). 
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Figure 3. Wave profile for CJC, = 3 when solitons coincide. 

Due to symmetry of u(x* ,  T,) as proved in 0 4, condition (6.1) is satisfied for T = 0. 
If u(X,+ 8, T* + T )  is a solution of equation (2.1), then u ( X , -  8, T, - T )  is also a solution 
of equation (2.1). Since condition (6.1) holds for T = 0, it must also be satisfied for 
T # 0. 

As a corollary, we may state that 

L( T, - T )  = L( T* -k 5) .  

Thus, at t = T,, 

= 0. 
dL 
dt 
- 

That is to say, at this time L is either a maximum or a minimum. From the physical 
point of view, the left soliton moves faster than the right one when t < T,. Therefore, L 
must be the minimum at t = T,. This proves the statement which we made in 8 4. 

In view of reversibility, we only have to study the wave motion from t = -CO up to 
T* . Consider the invariant for either soliton 

00 

C J t )  dt = [ C l ( T ) + C 2 ( T ) ]  dT = Xi(CO)-Xi(-oO), (6.2) 1- cc s_" , 
where the subscript i may be either 1 or 2. Asymptotically for T~ -, CO, we have 

X,(-CO) = C1(T*-Tm)+al, 

x,(cO) = c,(T, f T,) + U , .  

Thus, by (6.2) and (3.13), we obtain 

It indicates in equation (6.3) that for T < a, 

C l ( t ) S C , ( t )  < c,+c,. 
The term 



21 18 L Y Shih 

an invariant for either soliton, is the actual phase shift if the soliton is considered in 
uniform motion ( c i ( t )  = Ci when t e T, and ci(t) = C,-i when t > T,). 

Appendix. Approximate solution of Z(X, , T,) for q << 1 

When the amplitudes of two solitons are almost equal, q is very small and Z(X2, T,) 
is very large. Assume 

Z(X29 T,) = 4(v)/rt, ('4.1) 

where +(q) is of the order of unity, which may be verified by numerical computations 
of a few points. The parameter p may be approximated as 

p = - -  l + ?  - 1+2q. 
1-rt 

Substituting expressions (A. 1) and (A.2) into equation (4.Q and neglecting smaller 

(A.3) 

quantities of higher orders, we obtain 

(1 - 4)Z3P+ (1 - @p- l)ZP+ 2 + 2z2p+ 1 = 0. 

zp-L+1 = 4zp-1, 

Re-arranging equation (A.3) and dividing by Zp+2(ZP- ' + l), we have 

or 

(4- 1)zp- = 1. 

(4- 1 ) p  = rp. 

lim q 2 q  = 1, 

by equation (AS)  we have 

Multiplying equation (A.4) by q2v, we get 

Since 

v - 0  

lim 4(q) = 2. 
v-0  

We assume 4(q) = 2 - x(q ) ,  where a(q) << 1. By equation (AS), we obtain approximately 

4d = 1 

or 

4 ( 9 )  = 1 +(id2. 
This leads to equation (4.10). 

Similarly, by equation (4.4) we have 

A - 44z2yz2q + p 2 )  -- 
3c2 [(1+$J)z2q+1]2' 

Since N 1, we may approximate it by 

( + ~ ) ~ v  = 1 + 2~ In (k). 
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Thus, by equation (4.10), Z ( X , ,  T,) may be expressed as 

2 
rl 

Z = -[l+qln(+q)].  

Note that 

lim In q = 0. 
1'0 

Neglecting small quantities of second and higher orders, we get 

z2q = (2/q)? 

p 2  = 1+4q. 

Substituting expressions (A.6), (A.8), and (A.9) into equation (A.7), we prove equation 
(4.12). 
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